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Abstract

We present a stringy realization of the ISS metastable SUSY breaking model with
moduli stabilization. The mass moduli of the ISS model is stabilized by gauging
of a U(1) symmetry and its D-term potential. The SUSY is broken both by F-
terms and D-terms. It is possible to obtain de-Sitter vacua with a vanishingly small
cosmological constant by an appropriate fine-tuning of flux parameters.
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1 Introduction

One of the central dogmas in phenomenological applications of supersymmetry (SUSY)

is its dynamical breaking because it will provide a natural solution to the hierarchy prob-

lem. Quite a few models within the field theory have been proposed and investigated from

various viewpoints (see e.g. [1][2] for reviews). Given their success, string theoretic real-

ization of such dynamical SUSY breaking models is of great significance but the attempts

have been successful almost exclusively in a non-compact global SUSY limit, where the

gravity decouples.1

In the global SUSY limit, metastable SUSY breaking vacua are now known ubiquitous

in string theory [4]. However, almost all such realizations from the string theory have been

done in the global SUSY limit so far, where the gravity decouples and the moduli are fixed

by hand. One simple example of such metastable SUSY breaking models is the SQCD

with small mass deformation recently proposed by Intriligator, Seiberg and Shih (ISS) [5],

which breaks the SUSY by the F-term vacuum expectation value. It is easy to embed the

ISS model and its variants in the string theory, but only in the global SUSY limit.2 Once

we couple them to the supergravity, few viable models are known.

Indeed, it is not clear whether or not the ISS(-like) models are in the swampland

[15][16] once we introduce finite gravitational coupling. More generally, any SUSY break-

ing models in the global SUSY limit (e.g. [17][18][19][20][21][22] in addition to the ISS

model) suffer the same problem of moduli stabilization because typically the order param-

eter of the SUSY breaking tends to be zero once such a parameter becomes dynamical.

In this paper, we give a concrete solution to the moduli stabilization problem in the

string compactification with the dynamical SUSY breaking. We use an explicit stringy

realization of the ISS(-like) model because of its simplicity. Our key idea to stabilize the

moduli is to introduce a dynamical Fayet-Iliopoulos (FI) term. The dynamical FI term

1With the use of flux compactification and nonperturbative effects, it is possible to obtain string
compactification with broken SUSY based on the approach initiated in [3]. However, the connection to
the field-theory dynamical SUSY breaking models is far from obvious.

2See e.g. [6] for string construction in the global SUSY limit. Some attempts to stabilize Kähler
moduli in the string compactification with the ISS model can be found in [7, 8, 9, 10, 11, 12, 13], but
with fixed ISS mass moduli. In the heterotic string compactification, the stabilization of the mass moduli
was discussed in [14].
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itself will also be stabilized by the competition between the F-term potential and the

D-term potential.

In our construction, the SUSY is broken both by F-terms and D-terms, and we can

obtain a de-Sitter vacuum by an appropriate fine-tuning of flux parameters. The necessity

of the D-term has an interesting phenomenological consequence: one may be able to realize

the strongly coupled D-term gauge mediation [23],3 where very light gravitino (∼ O(1)

eV) can be realized with a possible natural candidate for the dark matter [25].

The organization of the paper is as follows. In section 2, we present our scheme of

moduli stabilization of the mass moduli and the dynamical FI term in our ISS(-like) model

within the global SUSY limit. In section 3, we study a stringy realization of the ISS(-like)

model with the moduli stabilization. In section 4, we present some discussions for future

studies.

2 Moduli stabilization of ISS model in global SUSY

limit

We would like to begin with the moduli stabilization problem of the ISS model [5] in

the global SUSY limit. The original ISS model consists of SU(Nc) SQCD with Nf pairs

of fundamental quarks ϕi and ϕ̄i, where i runs from 1 to Nf with Nc < Nf < 3
2
Nc so

that the Seiberg dual of the SQCD is in the infrared-free regime. We introduce a small

mass-superpotential perturbation

Welectric = mϕiϕ̄
i , (1)

where the mass parameter m should be much smaller than the dynamical scale Λ: |m| ≪
|Λ| to achieve a calculable metastable vacuum.

The metastable vacuum appears in its clearest form in the Seiberg dual description

[26]. We have SU(Nf − Nc) gauge theory with Nf pairs of dual fundamental quarks qi

and q̄i and singlet meson superfields Mij = ϕiϕ̄j. The dual theory has a superpotential

Wmagnetic = mTrM +
1

µ
qiMij q̄

j + nonperturbative term . (2)

3For an F-term gauge mediation, see [24].
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We will neglect the nonperturbative term hereafter by focusing on the metastable SUSY

vacuum. From the rank condition, the model breaks SUSY with the potential

V = Nc|m|2|Λ|2 (3)

up to a numerical constant of order 1 by setting M = 0, q = q̄ = i
√

mµ1Nf−Nc×Nf−Nc . It

can be further shown that the vacuum is metastable with a sufficiently long life-time as

long as |m| ≪ |Λ| [5].

Now, the problem of any spontaneous SUSY breaking is moduli stabilization as dis-

cussed in the introduction. In the string construction that we will investigate in the next

section, the mass parameter m becomes dynamical, which will be denoted by ρ. As is

clear from the potential (3), SUSY is restored by setting ρ = 0.

Our idea to stabilize the moduli ρ is to introduce an extra anomalous U(1) gauge

symmetry with a possibly field dependent FI parameter ξ. Under the U(1) symmetry,

we assign charge −2 to ρ and +1 to both ϕ and ϕ̄. The quantum anomaly demands

that Λ3Nc−Nf should be charged with charge 2Nf . On the dual side, we assign charge +2

to M . The charge of the dual Landau-pole scale Λ̃ and the charge of the dual quarks

are determined from the following constraint: we have a schematic relation between the

baryon superfields [27]

B ∼ ϕNc =
(

−(−µ)Nc−Nf Λ3Nc−Nf
)1/2

qNf−Nc (4)

and we also demand the U(1) invariance of the dual superpotential Wmagnetic = 1
µ
qiM

ij q̄j .
4

With a further natural assumption that µ is neutral under the U(1),5 we see that the

charge of the dual quark q and q̄ is −1 and Λ̃2Nf−3Nc has −2Nf of charge. As we will dis-

cuss later, the anomaly will be cancelled by four-dimensional Green-Schwartz mechanism,

which is also a natural consequence of the string construction of the model.

With this charge assignment, we have an extra D-term contribution to the potential

VD =
g2

2

(

ξ − |q|2 − |q̄|2 − 2|ρ|2 + 2
|M |2
|Λ̃|2

)2

+ (higher Kahler corrections) . (5)

4We have a further relation Λ3Nc−Nf Λ̃2Nf−3Nc = (−1)Nf−NcµNf , but it does not give an extra con-
dition.

5This is also natural from the string construction, where the local Yukawa interaction does not depend
on the volume of the 4-cycle, at least in non-compact examples. In any case, we can always absorb the
charge of µ by field redefinition of q and q̄.
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As is the case with the original ISS model, q, q̄ and M are fixed (up to remaining sym-

metries) for a given ρ with small g. This can be also done by solving the equation of

motions for the matter fields. An additional F -term potential |∂ρW |2 makes M vanish,

which is consistent with the ISS vacuum. The total effective potential for the ρ field is,

then, given by

V = VF + VD = Nc|ρ|2|Λ|2 +
g2

2

(

ξ − 2|ρ|2 − 2(Nf − Nc)|µρ|
)2

. (6)

For small ξ, which is necessary to obtain |ρ| ≪ |Λ|, the total potential is minimized at

|ρ| =
g2|µ|ξ(Nf−Nc)

Nc|Λ|2+2g2|µ|2(Nf−Nc)2
. In this way, the mass moduli ρ can be stabilized at a value

consistent with the ISS metastable vacuum, and |ρ| acquires a mass of order |Λ| (or g|µ|).
Due to the vacuum expectation value of |ρ|, all the matter fields acquired the mass squared

of order |Λ|2|ρ|
|µ|

∼ g2ξ.6

This is not the end of the story, however. As we have noticed, the gauging of this

U(1) is anomalous,7 and we have to implement the four-dimensional Green-Schwartz

mechanism [28]. Furthermore, when the FI parameter becomes dynamical, the SUSY

vacuum is restored by relaxing the D-term.

These two problems are solved at once when we consider the string model. From

the field-theory viewpoint in the global SUSY limit, things go as follows. The coupling

constant of the model becomes a chiral superfield T (x; θ) = 1
g2 (x) + i

8π2 φ(x) + O(θ) and

the axion part transforms as φ(x) → φ(x) − 2Nfα(x) under the gauge transformation

Aµ(x) → Aµ(x) + ∂µα(x) to cancel the anomaly. The Kähler potential, therefore, should

depend on the gauge invariant combination T +T †− Nf

4π2 V , where V is the vector superfield

corresponding to the U(1) gauge group. The action contains both the dynamical FI-term

and the Higgs-term:

∫

d4θK(T + T † − Nf

4π2
V ) =

(

∂K

∂V

)

V =0

V |θ4 +
1

2

(

∂2K

∂V 2

)

V =0

(

∂µφ

2Nf
+ Aµ

)2

+ · · · . (7)

6Our approximate way to stabilize the moduli is based on g2 expansion. Since the matter fields q, q̄ are
lighter than the mass moduli ρ, our strategy to minimize ISS matter fields first might need corrections.
We have, however, checked the analytic, as well as numerical, solution of the equation of motions to see
that the deviation is small as long as g2 is small.

7Non-anomalous gauging would be obtained by gauging the baryon symmetry of the ISS model.
However, under the baryon symmetry, m (or ρ) is not charged, and hence does not lead to the moduli
stabilization we aim at.
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The introduced D-term is

VD =
g2

2

(

−Nf

4π2
∂T K +

∑

i

qiφi∂φi
K

)2

, (8)

where φi are all the fields that linearly couple to the U(1) and qi are their charges. To go

further, we need a detailed form of the Kähler potential and the gauge kinetic function,

whose string origin will be discussed in the next section, but even at this point it seems

possible that T + T † and hence the FI-term would be stabilized for a judicious choice of

the Kähler potential.

As a side remark, we should point out that the stabilization of the non-zero FI-term and

the D-term SUSY breaking is only possible with the help of the F-term SUSY breaking.

This is due to the complexification of the gauge symmetry in the SUSY field theories

which always enables the modulus of the charged field to be adjusted so that we have

effectively zero D-term. In the supergravity theory, we also have a relation [29][30]

∑

i

δφi
DiW

W
= D , (9)

where δφi is a gauge transformation of the matter field. As a consequence, unless W = 0,

it is impossible to obtain D-term SUSY breaking without F-term SUSY breaking.

3 Moduli stabilization in stringy ISS model

In section 2, we discussed the moduli stabilization of the ISS model from the field-theory

viewpoints. To reach a definite conclusion, we need a detailed form of the Kähler potential,

which depends on the UV physics. We propose a stringy realization of the ISS model, with

a slight modification necessary for the moduli stabilization as discussed in the previous

section, to examine the moduli stabilization with a metastable de-Sitter vacuum.

Our stringy setup, which is inspired by [31], is as follows. We consider type IIB super-

string with flux compactification (see e.g. [32] for a review). All the complex structure

moduli and the dilaton are assumed to be fixed by the flux. For simplicity, we focus on

the Calabi-Yau orientifold compactification [3] with one Kähler modulus (which will be

denoted by T ), but generalizations to multi-moduli compactification should be possible.
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We consider a set of D7-branes and O-planes. We introduce a magnetic flux turned on

in one of the D7-branes wrapped around the 4-cycle corresponding to the Kähler modulus

T , which will generate a FI term in the effective four-dimensional field theory [33]. The

remaining D7-branes will give SU(Nc) super Yang-Mills theory. The total gauge group is

thus U(1) × SU(Nc).

The matter contents of the low-energy effective field theory can be summarized as

follows:

• The field ϕ stretching between the magnetized brane and SU(Nc) branes will be

charged (+1, Nc) under U(1) × SU(Nc).

• The field ϕ̄ stretching between the magnetized brane and the orientifold images of

SU(Nc) branes will be charged (+1, N̄c) under U(1) × SU(Nc).

• The field ρ stretching between the magnetized brane and its orientifold images will

be charged −2 under U(1).

To obtain the ISS model precisely, we have to introduce multiple copies of magnetized

D-branes to generate additional SU(Nf ) flavor symmetries. The moduli of SU(Nf ) flavor

groups will be fixed at a sufficiently small coupling to be regarded as a global symmetry.

The moduli fixing here has no theoretical difficulty but only makes the problem slightly

complicated, so we simply assume that this is the case (see, however, some related dis-

cussions in [34][35][36]).

So far, we have obtained all the matter ingredients to realize the stringy ISS model with

the mass moduli ρ and the Kähler moduli T . The string interaction gives a superpotential

W = ρϕiϕ̄
i , (10)

and a necessary D-term interaction including the dynamical FI term that comes from the

Chern-Simons coupling

∫

D7

C4 ∧ F ∧ F . (11)

When an appropriate topological condition is satisfied, the modulus T will be charged

under the U(1) and cancels the anomaly of the low-energy effective field theory [31].
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For Nc < Nf < 3
2
Nc, the low energy physics is better studied in the magnetic dual

description. As explained in section 2, we introduce dual quarks q and q̄ together with

singlet mesons M . The effective four-dimensional supergravity has the superpotential8

W = W0 + ρTrM +
1

µ
qiMij q̄

j (12)

with the Kähler potential (2τ = T + T †)

K = −2 log(τ 3/2 + ζ) +
|ρ|2
τn

+
|q|2 + |q̄|2

τn
+

|M |2
τn

e
8π2τ

3Nc−2Nf . (13)

Here W0 is the (constant) flux superpotential, and ζ is the stringy α′ correction to the

Kähler potential, which is proportional to the Euler number of the Calabi-Yau [37]. The

modular weight −n is not known in the magnetic description, so we will take it as a free

parameter for a moment.9 Finally, we have used the relation between the Landau pole

scale Λ̃ and T : Λ̃2Nf−3Nc = e+8π2T .

The total potential is given by

V = VF + VD , (14)

where the supergravity F-term potential gives

VF = eK(Kij̄DiWD̄j̄W̄ − 3|W |2) , (15)

and the D-term potential gives

VD =
1

2τ





3Nf

8π2τ
(1 + ζτ−3/2)−1 − 2|ρ|2 + |q|2 + |q̄|2 − 2|M |2e

8π2τ
3Nc−2Nf

τn

+
Nfn(|ρ|2 + |q|2 + |q̄|2 + |M |2e

8π2τ
3Nc−2Nf )

4π2τn+1
− 2Nf |M |2e

8π2τ
3Nc−2Nf

(3Nc − 2Nf)τn





2

. (16)

Note that we have used the fact that in our D7-brane model, the gauge kinetic term is

dominated by τ as

2

g2
= T + T † + (small dilaton contribution) . (17)

8We have neglected the non-perturbative term here since we focus on the metastable ISS-type vacua
along the same reasoning in the field theory analysis [5]. The non-perturbative term would be important
to discuss the SUSY preserving vacua, and around such vacua, after integrating out the massive flavors,
the moduli stabilization problem reduces to the one studied in [31].

9In the electric setup discussed in [31], they used n = 2/3 from the result [38] for chiral matters.
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As can be inferred from the field-theory discussion in the last section, the central issue

is how the Kähler moduli τ is stabilized. To see a general picture of the potential in the

large τ regime, we first note that the leading order contribution comes from the D-term

(16) as 1
2τ

(

3Nf

8π2τ

)2

, which shows a runaway behavior. The sub-leading contribution to the

matter-independent potential for τ comes from the supergravity F-term (15) as 3ζ
2τ9/2 |W0|2

due to the approximate no-scale-type Kähler potential.

At this point, there are two options. When ζ > 0, the higher 1/τ correction terms

should give a negative contribution to the potential. In this case, if one further assumes

that the potential, in the small τ region, should become (positively) large enough to

avoid a singular behavior, it is generically expected that we achieve metastable vacua

with a finite τ . When ζ < 0, only the assumption that the the potential grows near

τ 3/2 ∼ −ζ suffices to obtain metastable vacua. We will demonstrate both possibilities in

the following.

To confirm the above general expectation, we need to extremize the full supergravity

potential. At a first glance, it would be a technically difficult problem to find exact

extrema of the total potential. Here, in the following, we would like to argue that the ISS

vacuum with the mass moduli ρ fixed can be one of the extrema of the potential in the

large τ limit.10

We first integrate out the ISS matter fields q, q̄ and M to obtain the effective potential

for τ and ρ. In the large τ regime, the matter-dependent F-term potential (15) scales as

τn−3
∑

|∂iW |2 with no contribution from W0 due to the approximate no-scale-type Kähler

potential. As a consequence, to integrate out the ISS matter fields, the F-term dominates

over the D-term for n > 1
2

while the D-term dominates over the F-term for n < 1
2
.

Let us concentrate on the former case (n > 1
2
). At the first order approximation, one

can minimize the F-term potential, which yields an ISS vacuum. We note that at the ISS

vacuum, the field dependent superpotential vanishes and the superpotential is given by

the flux part alone: W |ISS = W0. Then, neglecting the supergravity corrections, which

turns out to appear as higher 1/τ corrections, we obtain a potential for ρ as in (6):

V (ρ) ∼ Ncτ
n−3|ρ|2e−

8π2τ
3Nc−2Nf +

1

2τ

(

3Nf

8π2

1

τ
− 2|ρ|2 + 2(Nf − Nc)|µρ|

τn

)2

. (18)

10At the same time, we also assume e
−

8π2τ
3Nc−2Nf is not so small to satisfy the ISS condition |ρ| ≪ |Λ|.
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At this order, as is the case with the global SUSY limit discussed in the previous

section, ρ is fixed at

|ρ| =

3Nf (Nf−Nc)|µ|

8π2τn+2

Ncτn−3e
− 8π2τ

3Nc−2Nf +
2|µ|2(Nf−Nc)2

τ2n+1

. (19)

To see the moduli stabilization of τ , we note that in addition to the contribution from

the potential in the global SUSY limit

Vglobal =
1

2τ

(

3Nf

8π2τ

)2

−
(Nf − Nc)

2
(

3Nf

8π2τ

)2
|µ|2

τ2n+2

Ncτn−3e
− 8π2τ

3Nc−2Nf +
2|µ|2(Nf−Nc)2

τ2n+1

, (20)

we have supergravity F-term corrections

δVSUGRA =
3ζ

2τ 9/2
|W0|2 + (1 − n − n2)

|ρ|2 + 2(Nf − Nc)|ρµ|
τ 3+n

|W0|2 + · · ·

=
3ζ

2τ 9/2
|W0|2 + (1 − n − n2)

2(Nf − Nc)
2
(

3Nf

8π2

)

|µ|2|W0|2

τ2n+5

Ncτn−3e
− 8π2τ

3Nc−2Nf +
2|µ|2(Nf−Nc)2

τ2n+1

+ · · · . (21)

The D-term corrections and higher Kähler corrections are neglected here. Substituting

(19), we obtain a total potential Vglobal + δVSUGRA for τ . It is possible to stabilize τ

in a metastable de-Sitter vacuum with a vanishingly small cosmological constant by an

appropriate fine-tuning of flux parameters.

For example, by taking Nc = 5000, Nf = 6000, |µ| = 14.72, ζ = 143, and |W0| = 0.11

for n = 1, we will obtain a metastable vacuum as expected from the general argument

for ζ > 0. The moduli τ is fixed around τ ∼ 1.4 and the cosmological constant can be

arbitrarily small. See figure 1 for the effective potential for τ . For comparison, we have

also shown the (ρ, τ) potential in figure 2. We can see the consistency of our approach

because the mass for the ρ field is much larger than that for τ .

While we need a significant fine-tuning to obtain de-Sitter vacua, it is slightly easier

to obtain anti de-Sitter vacua with relatively small number of branes. For instance,

Nc = 10, Nf = 12, ζ = 0.9, µ = 10−4, |W0| = 0.01 for n = 1 gives the anti de-Sitter

vacuum (V0 ∼ −2×10−10) with τ ∼ 11. If one assumes that the ISS vacuum continues to

be a first order solution to the full potential for n ≤ 1/2, we will also obtain a metastable

vacuum for ζ < 0 in our approximation by taking e.g. Nc = 10, Nf = 12, |µ| = 0.00008,

10



ζ = −6, and |W0| = 0.01 for n = 1/2 with τ ∼ 2.2 and V0 = −2 × 10−5. In these cases,

we need a suitable uplifting mechanism to obtain a de-Sitter vacuum.

1 2 3 4
tau

-0.01

0.01

0.02

0.03

0.04

0.05
V

Figure 1: Effective potential for τ . The cosmological constant can be tuned to be arbi-
trarily small.

4 Discussion

In this paper, we have investigated the moduli stabilization problem of the dynamical

(metastable) SUSY breaking models in the string flux compactification. As a concrete

example, we have used the ISS(-like) model with an extra U(1) gauge symmetry. The

moduli stabilization is well under control for large τ (but not too large τ).

In our construction, the SUSY breaking scale is naturally related with the string scale

unless we allow a rather significant amount of fine-tuning of parameters. One possibility to

obtain a low energy SUSY breaking more naturally is to use a warped compactification,

which would drastically reduce the relevant energy scale of the physics on the 4-cycle

where the SUSY breaking occurs.

As in the original ISS model, our model has several Goldstone modes, part of which

are absorbed into massive vector multiplets due to the Higgs mechanism. In addition,

the mass spectrum is hierarchical and we have a light moduli field τ , typically with the

gravitino mass scale, when the SUSY breaking is sufficiently small. The cosmological
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1.2
1.4

1.6
tau

0.00773

0.00774

0.00775
rho

0.00

0.01

0.02

V

Figure 2: Potential for (ρ, τ). The mass moduli ρ is much heavier than τ , so our approx-
imation is consistent. The minimum of the potential is located at almost the same point
as in figure 1.

significance and constraint on these light fields would be of most importance from phe-

nomenological viewpoints.

Among other things, one big feature of our model is that it naturally accompanies

the D-term SUSY breaking as well as the F-term SUSY breaking due to the dynamical

FI term. Recently, a phenomenologically interesting class of D-term gauge mediation has

been proposed [23] with very light gravitino (∼ O(1) eV) and a possible candidate for the

dark matter [25]. The stringy realization in [23] was in the global SUSY limit without

giving an explicit moduli stabilization mechanism. Since our model fixes the dynamical

FI term within the supergravity, which is known to be difficult in general (see e.g. [39]),

applications to the strongly coupled D-term gauge mediation would be promising. For

this, we need a better control of the potential in the small τ region. We expect that by

using string dualities, the analysis for the small τ region would be possible.

12



Acknowledgements

The research of Y. N. is supported in part by NSF grant PHY-0555662 and the UC

Berkeley Center for Theoretical Physics.

References

[1] Y. Shadmi and Y. Shirman, Rev. Mod. Phys. 72, 25 (2000) [arXiv:hep-th/9907225].

[2] K. Intriligator and N. Seiberg, arXiv:hep-ph/0702069.

[3] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68, 046005 (2003)

[arXiv:hep-th/0301240].

[4] H. Ooguri and Y. Ookouchi, Nucl. Phys. B 755, 239 (2006) [arXiv:hep-th/0606061].

H. Ooguri, Y. Ookouchi and C. S. Park, arXiv:0704.3613 [hep-th].

[5] K. Intriligator, N. Seiberg and D. Shih, JHEP 0604, 021 (2006)

[arXiv:hep-th/0602239].

[6] S. Franco and A. M. Uranga, JHEP 0606, 031 (2006) [arXiv:hep-th/0604136].

S. Franco, I. Garcia-Etxebarria and A. M. Uranga, JHEP 0701, 085 (2007)

[arXiv:hep-th/0607218]. JHEP 0611, 088 (2006) [arXiv:hep-th/0608157]. C. Ahn,

Class. Quant. Grav. 24, 1359 (2007) [arXiv:hep-th/0608160]. C. Ahn, Phys.

Lett. B 647, 493 (2007) [arXiv:hep-th/0610025]. R. Argurio, M. Bertolini,

S. Franco and S. Kachru, JHEP 0701, 083 (2007) [arXiv:hep-th/0610212].

R. Tatar and B. Wetenhall, JHEP 0702, 020 (2007) [arXiv:hep-th/0611303].

C. Ahn, JHEP 0705, 053 (2007) [arXiv:hep-th/0701145]. C. Ahn, Class. Quant.

Grav. 24, 3603 (2007) [arXiv:hep-th/0702038]. C. Ahn, arXiv:hep-th/0703015.

R. Argurio, M. Bertolini, S. Franco and S. Kachru, JHEP 0706, 017 (2007)

[arXiv:hep-th/0703236]. S. Murthy, arXiv:hep-th/0703237. C. Ahn, arXiv:0704.0121

[hep-th]. I. Garcia-Etxebarria, F. Saad and A. M. Uranga, JHEP 0705, 047 (2007)

[arXiv:0704.0166 [hep-th]]. T. Kawano, H. Ooguri and Y. Ookouchi, Phys. Lett.

B 652, 40 (2007) [arXiv:0704.1085 [hep-th]]. C. Ahn, arXiv:0705.0056 [hep-th].

D. Malyshev, arXiv:0705.3281 [hep-th]. C. Ahn, arXiv:0706.0042 [hep-th]. C. Ahn,

13

http://arXiv.org/abs/hep-th/9907225
http://arXiv.org/abs/hep-ph/0702069
http://arXiv.org/abs/hep-th/0301240
http://arXiv.org/abs/hep-th/0606061
http://arXiv.org/abs/0704.3613
http://arXiv.org/abs/hep-th/0602239
http://arXiv.org/abs/hep-th/0604136
http://arXiv.org/abs/hep-th/0607218
http://arXiv.org/abs/hep-th/0608157
http://arXiv.org/abs/hep-th/0608160
http://arXiv.org/abs/hep-th/0610025
http://arXiv.org/abs/hep-th/0610212
http://arXiv.org/abs/hep-th/0611303
http://arXiv.org/abs/hep-th/0701145
http://arXiv.org/abs/hep-th/0702038
http://arXiv.org/abs/hep-th/0703015
http://arXiv.org/abs/hep-th/0703236
http://arXiv.org/abs/hep-th/0703237
http://arXiv.org/abs/0704.0121
http://arXiv.org/abs/0704.0166
http://arXiv.org/abs/0704.1085
http://arXiv.org/abs/0705.0056
http://arXiv.org/abs/0705.3281
http://arXiv.org/abs/0706.0042


arXiv:0707.0092 [hep-th]. R. Tatar and B. Wetenhall, arXiv:0707.2712 [hep-th].

C. Ahn, arXiv:0708.0439 [hep-th].

[7] E. Dudas, C. Papineau and S. Pokorski, JHEP 0702, 028 (2007)

[arXiv:hep-th/0610297].

[8] H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Phys. Rev. D 75, 025019 (2007)

[arXiv:hep-th/0611024].

[9] O. Lebedev, V. Lowen, Y. Mambrini, H. P. Nilles and M. Ratz, JHEP 0702, 063

(2007) [arXiv:hep-ph/0612035].

[10] Z. Lalak, O. J. Eyton-Williams and R. Matyszkiewicz, JHEP 0705, 085 (2007)

[arXiv:hep-th/0702026].

[11] M. Gomez-Reino and C. A. Scrucca, arXiv:0706.2785 [hep-th].

[12] H. Abe, T. Higaki and T. Kobayashi, arXiv:0707.2671 [hep-th].

[13] P. Brax, A. C. Davis, S. C. Davis, R. Jeannerot and M. Postma, arXiv:0707.4583

[hep-th].

[14] M. Serone and A. Westphal, arXiv:0707.0497 [hep-th].

[15] C. Vafa, arXiv:hep-th/0509212.

[16] H. Ooguri and C. Vafa, Nucl. Phys. B 766, 21 (2007) [arXiv:hep-th/0605264].

[17] A. Dymarsky, I. R. Klebanov and N. Seiberg, JHEP 0601, 155 (2006)

[arXiv:hep-th/0511254].

[18] M. Dine, J. L. Feng and E. Silverstein, Phys. Rev. D 74, 095012 (2006)

[arXiv:hep-th/0608159].

[19] M. Aganagic, C. Beem, J. Seo and C. Vafa, arXiv:hep-th/0610249.

[20] O. Aharony, S. Kachru and E. Silverstein, arXiv:0708.0493 [hep-th].

[21] M. Aganagic, C. Beem and B. Freivogel, arXiv:0708.0596 [hep-th].

[22] M. Aganagic, C. Beem and S. Kachru, arXiv:0709.4277 [hep-th].

[23] Y. Nakayama, M. Taki, T. Watari and T. T. Yanagida, arXiv:0705.0865 [hep-ph].

14

http://arXiv.org/abs/0707.0092
http://arXiv.org/abs/0707.2712
http://arXiv.org/abs/0708.0439
http://arXiv.org/abs/hep-th/0610297
http://arXiv.org/abs/hep-th/0611024
http://arXiv.org/abs/hep-ph/0612035
http://arXiv.org/abs/hep-th/0702026
http://arXiv.org/abs/0706.2785
http://arXiv.org/abs/0707.2671
http://arXiv.org/abs/0707.4583
http://arXiv.org/abs/0707.0497
http://arXiv.org/abs/hep-th/0509212
http://arXiv.org/abs/hep-th/0605264
http://arXiv.org/abs/hep-th/0511254
http://arXiv.org/abs/hep-th/0608159
http://arXiv.org/abs/hep-th/0610249
http://arXiv.org/abs/0708.0493
http://arXiv.org/abs/0708.0596
http://arXiv.org/abs/0709.4277
http://arXiv.org/abs/0705.0865


[24] H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007)

[arXiv:hep-ph/0612186]. H. Murayama and Y. Nomura, Phys. Rev. D 75, 095011

(2007) [arXiv:hep-ph/0701231].

[25] K. Hamaguchi, S. Shirai and T. T. Yanagida, arXiv:0707.2463 [hep-ph].

[26] N. Seiberg, Nucl. Phys. B 435, 129 (1995) [arXiv:hep-th/9411149].

[27] K. A. Intriligator and N. Seiberg, Nucl. Phys. Proc. Suppl. 45BC, 1 (1996)

[arXiv:hep-th/9509066].

[28] M. Dine, N. Seiberg and E. Witten, Nucl. Phys. B 289, 589 (1987).

[29] I. Joichi, Y. Kawamura and M. Yamaguchi, arXiv:hep-ph/9407385.

[30] K. Choi, A. Falkowski, H. P. Nilles and M. Olechowski, Nucl. Phys. B 718, 113

(2005) [arXiv:hep-th/0503216].

[31] D. Cremades, M. P. Garcia del Moral, F. Quevedo and K. Suruliz, JHEP 0705, 100

(2007) [arXiv:hep-th/0701154].

[32] M. R. Douglas and S. Kachru, Rev. Mod. Phys. 79, 733 (2007)

[arXiv:hep-th/0610102].

[33] H. Jockers and J. Louis, Nucl. Phys. B 718, 203 (2005) [arXiv:hep-th/0502059].

[34] S. Forste, Phys. Lett. B 642, 142 (2006) [arXiv:hep-th/0608036].

[35] A. Giveon and D. Kutasov, Nucl. Phys. B 778, 129 (2007) [arXiv:hep-th/0703135].

[36] A. Amariti, L. Girardello and A. Mariotti, arXiv:0706.3151 [hep-th].

[37] K. Becker, M. Becker, M. Haack and J. Louis, JHEP 0206, 060 (2002)

[arXiv:hep-th/0204254].

[38] J. P. Conlon, D. Cremades and F. Quevedo, JHEP 0701, 022 (2007)

[arXiv:hep-th/0609180].

[39] P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, Class. Quant. Grav. 21, 3137

(2004) [arXiv:hep-th/0402046].

15

http://arXiv.org/abs/hep-ph/0612186
http://arXiv.org/abs/hep-ph/0701231
http://arXiv.org/abs/0707.2463
http://arXiv.org/abs/hep-th/9411149
http://arXiv.org/abs/hep-th/9509066
http://arXiv.org/abs/hep-ph/9407385
http://arXiv.org/abs/hep-th/0503216
http://arXiv.org/abs/hep-th/0701154
http://arXiv.org/abs/hep-th/0610102
http://arXiv.org/abs/hep-th/0502059
http://arXiv.org/abs/hep-th/0608036
http://arXiv.org/abs/hep-th/0703135
http://arXiv.org/abs/0706.3151
http://arXiv.org/abs/hep-th/0204254
http://arXiv.org/abs/hep-th/0609180
http://arXiv.org/abs/hep-th/0402046

	Introduction
	Moduli stabilization of ISS model in global SUSY limit
	Moduli stabilization in stringy ISS model
	Discussion

